排列组合是行测考试中数量关系部分一种常考的题型,它题型多样,思路灵活,不易掌握是让很多考生头疼的一种问题。但是,如果我们在备考过程中能够找到有效的解决方法就会发现其实排列组合并没有想象的那么难。下面中公教育就通过几道题目帮助各位考生梳理一下排列组合中一种常见题型:隔板模型。
一、题型特征
隔板模型的本质是同素分堆,即将相同元素分给不同的对象。例如:把10块糖分给4个小朋友,每个小朋友至少分一块,有多少种情况?
二、隔板模型公式
将n个相同元素分给m个不同对象,每个对象至少有1个元素,则有种情况。
三、应用条件
1.所要分的元素必须完全相同
2.元素必须分完,不能有剩余
3.每个对象至少分到1个
四、典型例题
例1.公司采购了一批新的同一类型的电脑共8台,计划分给公司的3个部门,每个公司至少分一台,最终电脑全部分完,共有多少种不同的分配方案?
A.19 B.20 C.21 D.22
【中公解析】通过读题发现满足隔板模型的所有应用条件,可以直接应用公式,即故答案选择C。
例2.将10个相同的小球放入编号分别是1、2、3的盒子里,若每个盒子里球的个数不小于它的编号,则共有多少种放法?
A.12 B.13 C.14 D.15
【中公解析】题目不满足至少分1的条件,但是可以进行转换。首先在每个盒子放入0、1、2个球,还剩10-1-2=7个球,即可以将题转化为“将7个球放入3个盒子里,使得每个盒子里至少有一个球”,运用隔板模型的公式为选择D。
例3.将7个相同的玩具分给3个小朋友,任意分,分完即可,有多少种不同的分法?
A.36 B.50 C.100 D.400
【中公解析】此题不满足至少分1的条件,可利用先借后还的方法进行转化。先向每个小朋友都借1个玩具,并且保证在发放玩具的过程把借过来的玩具都发还给小朋友,那么这个问题就变成是“10个相同玩具分给3个小朋友且每人至少分一个”,利用公式有选择A选项。
通过以上几道题目的练习与解析,相信大家对于隔板模型有一定的了解了,在做题时要时刻注意题目是否满足适用条件,选用适当的方法进行转换再应用公式予以解题。中公教育希望各位考生在备考过程中能够不断积累、掌握合适的方法。
【2022国考行测数量关系:排列组合之隔板模型】相关文章:
鹤岗2020年中医执业助理医师资格考试现场审核时间及地点02-07
2016年山西运城中考征集志愿填报时间:7月15日-18日02-07
上海2020年税务师考试时间是什么时候?02-07
关于冬至的作文:冬至的气氛_500字02-07
2015年江苏徐州中考数学试题02-07
关于惊蛰的作文:惊蛰雷_800字02-07
小学一年级英语下册试卷检测02-07
2022年注册化工工程师补考考试时间:2023年6月17日、18日02-07
关于大暑的作文:我喜欢大暑_450字02-07
