一、分式的乘方和乘方法则
1、分式的乘除
(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用式子表示为$\frac{a}{b}·\frac{c}{d}=\frac{a·c}{b·d}$。
(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为$\frac{a}{b}÷\frac{c}{d}=\frac{a}{b}·\frac{d}{c}=\frac{a·d}{b·c}$。
(3)乘方法则:一般地,当$n$是正整数时,
$\left(\displaystyle{}\frac{a}{b}\right)^n=$$\begin{matrix} \underbrace{\displaystyle{}\frac{a}{b}·\frac{a}{b}·\cdots·\frac{a}{b} }\\n个 \end{matrix}=$$\begin{matrix}n个\\ \overbrace{\begin{matrix} \underbrace{\displaystyle{}\frac{a·a·\cdots·a}{b·b·\cdots·b}} \\n个\\ \\ \end{matrix}} \end{matrix}=$$\displaystyle{}\frac{a^n}{b^n}$,即$\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}$。
即分式乘方要把分子、分母分别乘方。
2、分式的加减
类似分数的加减,分式的加减法则是
(1)同分母分式相加减,分母不变,把分子相加减。
即:$\frac{a}{c}±\frac{b}{c}=\frac{a±b}{c}$。
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。
即:$\frac{a}{b}±\frac{c}{d}=\frac{ad}{bd}±\frac{bc}{bd}=\frac{ad±bc}{bd}$。
二、分式的乘方的相关例题
$\frac{x^2-1}{x+1}·\frac{x^2-x}{x^2-2x+1}=$___
A.$x$ B.$2x$ C.$x^2$ D.$2x^2$
答案:A
解析:原式$=\frac{(x+1)(x-1)}{x+1}·\frac{x(x-1)}{(x-1)^2}=x$。故选A 。
【分式的乘方和乘方法则】相关文章:
2010年江苏中西医结合执业医师考试成绩查询及合格分数线公布时间预告02-12
赴瑞士留学推荐信的用词大全02-12
难忘的童年作文02-12
蒲公英的作文02-12
家长速览!2024—2025学年安徽铜陵市中小学开学时间和放假安排公布02-12
英语口语培训:不发音的字母02-12
听,那沉默的声音作文02-12
no one与nobody的用法是什么 相关句子整理02-12
小物件里的旧时光作文02-12
2023年托福考试的时间表 怎么准备02-12
画漫画的作文02-12
重阳节的作文600字02-12
